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SUMMARY: A short, reliable, and practical synthesis of (S)-(+)-2-(e-tolylsulfinyl)-2-buten- 
4-olide has been developed, and the utility of this Michael acceptor for highly 
enantiocontrolled synthesis of 3-substituted 4-butanolides has been demonstrated. 

Because of the importance of many S-substituted cycloalkanones as biologically active 

natural products and as widely useful synthetic intermediates, we have developed a program for 

asymmetric synthesis of these chiral molecules in high enantiomeric purity.l Our methodology 

is based on faithful i,3-transfer of chirality from the sulfur atom of a temporarily attached, 

chiral, auxiliary sulfoxide group to the b-vinyl carbon atom of a conjugated enone system 

during organometallic conjugate addition to enantiornerically pure 2-(arylsulfinyl)-il-cyclo- 

alkenones 1 (Ar = e-tolyl or panisyllf; R'=H, Mele, orptolylle; n=5 or 6; W=CH2; M=Mg, Zn, 

or Ti). B"ecause of the importance of many 3-substituted and 2,3-disubstituted 4-butanolides 

(y-butyrolactones) as biologically active (e.g. anticancer2, anti-glaucoma3, pheromone4, and 

inducer of streptomycin biosynthesis5) natural products and as broadly useful synthons, we 

have now prepared &)-(+)-2-(e-tolylsulfinyl)-2-buten-4-olide [(+)-la, W=O, Ar=e-tolyl, R=H, 
- 

n=5) in virtually complete enantiomeric purity, and we have illustrated its effectiveness as a 

Michael acceptor for asymmetric synthesis of 3-substituted 4-butanolides by preparation of a 

vicinally-disubstituted lignan lactone6 of high enantiomeric purity. 

Despite its structural simplicity, relatively small size, and accessibility in racemic 

form,7 enantiomerically pure butenolide (+)-la is indeed an exceptionally challenging syn- 
- 

thetic target. For example, although we have been able to prepare cyclic bromovinylic ortho- 

ester 2a from 2-bromo-2-buten-4-olide8 (anhydrous and freshly distilled BF3, ethylene oxide, 

O'C, 42 hr),g all attempts at bromine + metal exchange1s10 using I-butyllithium, t-butyl- 

lithium, sodium-containing lithium metal, or Rieke magnesium were unsuccessful, as were all 

attempts at direct lithiation at the 2-position of the corresponding cyclic orthoester 2b. 

Following thorough retrosynthetic analysis (bonds a-f in structure la) and unsuccessful e;- 
-- 

periments to form bonds b-f in butenolide (+)-la, we are now very pleased to report a suc- 

cessful, short, reliable, and practical (i.e. gram scale) synthesis of butenolide (furan- 

2(5H)-one) (+)-la in virtually complete enantiomeric purity via the accompanying scheme. 
__ 
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Za, Y = Br 
;rtr,Y= H 

3 i+)-4 5 (+)-la 

a t-Bu(Me2)SiCl, bt-BuLi then (-)-&-TolS02Menthyl 'r-i-Bu4NF * MeLi, then CO2 e CHC13, 9 days 

Propargyl alcohol underwent hydrostannylation (_?rBu3SnH, catalytic azobisisobutyronitrile, 

80°C, 2 hr) and then iodination (12, CH2Cl2, 25'C, 4 hr) according to the literature proced- 

ure12 to afford E-vinylic iodide 3. 0-Silylation CL-6u(Me2)SiC1, imidazole, OMF, 25', 18 hrl 

of 4 g of alcohol 3 was followed by iodine 

-120°C, 1 hr),13 N 

+ lithium exchange (t-BuLi, 4:l:l THF:Et20:pentane, 

sulfinylation [(-)-menthyl &-toluenesulfinate in the same solvent system can- 

nulated at -78'C during 15 minutes into the vinylic lithium solution, 0.5 hr at -12O'C then 1 

hr at -30")],14 and finally 0-desilylation (fi-Bu4NF, THF, O'C, 5 min, then 25'C, 40 min) to 

produce, in 43% overall yield from vinylic iodide 3, crystalline, stable, vinylic sulfoxide 

(+)-4 Cmp. 77-78OC (CH2C12, Et20, hexane); CalE5 + g2.6", [a)$z5 + 1065' (c, 0.94 CHC13); NMR 

(CDC13): 6 6.66 (1 H, dt, Jd=I4.8 Hz, Jt=2.8 Hz), 6.56 (1 H, dt, Jd=I4.8 Hz, Jt=1.3 Hz), 4.33 

(2 H, m), 2.51 (1 H, t, J=6.0 Hz, OH), 2.40 (3 H, s, tolyl CH3); C10H1202 requires: C, 61.2; 

H, 6.2; S, 16.45%. Found C, 61.3; H, 6.25; S, 16.45%.] a-Lithiation of vinylic sulfoxide 

(+)-4 (2.7 equivs. of MeLi, THF, -78'C, 0.5 hr)15 was followed by carboxylation (CO2 bubbled 

through solution, 5 min , -78"C, then -3O"C, 2 hr)la; strongly acidic conditions (20% aqueous 

HCl in presence of EtOAc) were required to liberate hydroxy carboxylic acid 5 [NMR (CDC13): 6 

2.38 (3 H, s, CH3), 4.75 (2 H, d, J = 4.72 Hz, CH2), 7.62 (1 H, bs, =CH), 8.35 (2 H, bs, COOH, 

OH)]. Simply on standing in chloroform solution at 25°C for at least 7 days, hydroxy acid 5 

underwent spontaneous cyclization to form the desired butenolide sulfoxide (+)-la having mp. 

121-125"C, decomp. (EtOAc, Et20, light petroleum ether), [a]$50 +244’, [a]$gl +1??3O (C, 1.3, 

CHC13), and having spectroscopic characteristics [e.g. NMR (CDC13) 6 8.03 (1 H, t, J = 1.7 Hz, 

H-3)] corresponding to those of independently prepared racemic 2-arylsulfinyl-2-buten -4- 

elides.' 

The enantiomeric purity of butenolide sulfoxide (+)-la was determined directly using the 
_* 

chiral NMR shift reagent tris[3-(heptafluoropropylhydroxymethylene)-~-camphorato]euro- 
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pium(II1). Complexation with 0.25 equivalents of this europium reagent produced a downfield 

shift of vinylic H-3 from 6 8.03 to 611.17with no detectable splitting of this signal; similar 

treatment of a racemic 2-arylsulfinyl-2-buten-4-olide produced two new signals of equivalent 

intensity for H-3 appearing at 611.30 and 611.45. Therefore, butenolide sulfoxide (+)-la has 

an extremely high (>98%) enantiomeric purity. 

Complexation of butenolide sulfoxide (+)-la with I equivalent of zinc dibromide in 2,5- 

dimethyltetrahydrofuran (0MTHF)Ig as solvent at -78"C, followed first by conjugate addition16 

of 3,4-methylenedioxybenzylmagnesium chloride (3 equivalents) in DMTHF and then by Raney 

nickel reductive cleavage of the lactone-sulfoxide carbon-sulfur bond, produced 3-benzylated 

4-butanolide (-)-6 which was isolated by preparative tic in 70% overall yield (eq. 1). The 

negative optical r"otation of benzylated lactone (-)-6 [[a]D - 4.7 ' (c 2.3 CHC13), lit2cy17 

[aID - 4.8" c, 1.14 (CHC13)] indicated that this asyimetric carbon-carbon bond formation had 

occurred on the Si face of the vinylic B-keto sulfoxide system, consistent with our previously - 

proposed chelate mode1.I 2-Acylation of lactone (-)-6 using Koga's procedure2c led to trans- 

2,3-disubstituted lignan lactone (-)-7, (-)-podorhigon, mp. 128-9°C [lit.17 mp. 129-13O"C] 

[a]D 2I = -75.5' c 0.2 (CHC13) [lit.17 fa]EI -79.5" c 0.6 (CHC13)] with literature-identicalI 

spectroscopic characteristics in 95% enantiomeric purity! (-)-Podorhizon is the antipode of 

natural (+)-podorhizon, a member of the podophyllotoxin anticancer family.17 Because d- 

menthol has recently become commercially available, (f?)-(-)-2-(I-tolylsulfinyl)-2-buten-4- 

olide [(-)-la] and therefore (+)-podorhizon should be prepared easily using the same reactions 
MN 

as shown in eq. 1. 

3. Rcttw-N i 

The ready accessibility of @)-(+)-2-(e-tolylsulfinyl)-2-buten-4-olide [(+)-la] and its 

extraordinary effectiveness as a Michael acceptor7 for highly (and predictably) enantio- 

controlled conjugate addition of organometallic reagents, as exemplified in this preliminary 

report by preparation of (-)-podorhizon, represent a highly significant and widely useful ad- 

vance in asymmetric synthesis. We are pursuing study of butenolide sulfoxide la and of other 

unsaturated lactone sulfoxides. 
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